Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 85(1): 91-104, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34965114

ABSTRACT

Two benzophenone glucosides (1 and 2), five flavan-3-ol dimers (5-9), and 17 known compounds (3, 4, and 10-24) were identified from the bark extract of Cassia abbreviata. The chemical structures display two points of interest. First, as an unusual characteristic feature of the 1H NMR spectra of 1 and 2, the signals for the protons on glucosidic carbons C-2 are shielded as compared to those generally observed for glucosyl moieties. The geometrically optimized 3D structures derived from conformational analysis and density functional theory (DFT) calculations revealed that this shielding effect originates from intramolecular hydrogen bonds in 1 and 2. Additionally, 3-15 were identified as dimeric B-type proanthocyanidins, which have 2R,3S-absolute-configured C-rings and C-4-C-8″ linkages, as evidenced by X-ray crystallography and by NMR and ECD spectroscopy. These results suggest the structure-determining procedures for some reported dimers need to be reconsidered. The trypanocidal activities of the isolated compounds against Trypanosoma brucei brucei, T. b. gambiense, T. b. rhodesiense, T. congolense, and T. evansi were evaluated, and the active compounds were identified.


Subject(s)
Benzophenones/isolation & purification , Benzophenones/pharmacology , Cassia/chemistry , Glucosides/chemistry , Proanthocyanidins/isolation & purification , Proanthocyanidins/pharmacology , Trypanocidal Agents/pharmacology , Benzophenones/chemistry , Crystallography, X-Ray , Dimerization , Molecular Structure , Proanthocyanidins/chemistry , Proton Magnetic Resonance Spectroscopy , Trypanosoma/drug effects
2.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199682

ABSTRACT

African trypanosomes cause diseases in humans and livestock. Human African trypanosomiasis is caused by Trypanosoma brucei rhodesiense and T. b. gambiense. Animal trypanosomoses have major effects on livestock production and the economy in developing countries, with disease management depending mainly on chemotherapy. Moreover, only few drugs are available and these have adverse effects on patients, are costly, show poor accessibility, and parasites develop drug resistance to them. Therefore, novel trypanocidal drugs are urgently needed. Here, the effects of synthesized nitrofurantoin analogs were evaluated against six species/strains of animal and human trypanosomes, and the treatment efficacy of the selected compounds was assessed in vivo. Analogs 11 and 12, containing 11- and 12-carbon aliphatic chains, respectively, showed the highest trypanocidal activity (IC50 < 0.34 µM) and the lowest cytotoxicity (IC50 > 246.02 µM) in vitro. Structure-activity relationship analysis suggested that the trypanocidal activity and cytotoxicity were related to the number of carbons in the aliphatic chain and electronegativity. In vivo experiments, involving oral treatment with nitrofurantoin, showed partial efficacy, whereas the selected analogs showed no treatment efficacy. These results indicate that nitrofurantoin analogs with high hydrophilicity are required for in vivo assessment to determine if they are promising leads for developing trypanocidal drugs.


Subject(s)
Nitrofurans/administration & dosage , Nitrofurans/chemical synthesis , Nitrofurantoin/analogs & derivatives , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/chemical synthesis , Trypanosomiasis, African/drug therapy , Administration, Oral , Animals , Cell Line , Disease Models, Animal , Female , Mice , Molecular Structure , Nitrofurans/chemistry , Nitrofurans/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei rhodesiense/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...